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On hydraulic control in a stratified fluid 
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The conditions for hydraulic control to occur in a continuously stratified fluid are 
discussed, using density as a vertical coordinate in place of height. A suitable 
definition of Froude number, which varies with depth, is given. Three conditions for 
control emerge. One is that the flow be everywhere well-behaved; another is that 
control occurs when the local long-wave speed vanishes. These are shown to be 
equivalent. The location of the control is determined indirectly by the Froude 
number, which occurs as the coefficient in an ordinary differential equation ; the 
Froude number must be somewhere less than a critical value for control to occur. The 
third condition requires the coalescence of two different solutions for the same 
boundary conditions at  the point of control. It is shown that this requirement is non- 
trivial: examples given include a simple control by topography, a virtual control, 
and a control by a constriction. A direct connection with layered theory is produced. 
Brief discussions of bidirectional flow (where the isopycnal surface of zero velocity 
must be flat) and weak shocks are given. 

1. Introduction 
The flow of a fluid in a channel whose sides or floor are subject to variations has 

been a constant object of study for many decades. The solutions for the flow of a 
single homogeneous layer which passes either over a bump or through a constriction 
are treated in standard texts (e.g. Prandtl 1952). Extension of the problems to 
stratified fluids has been found difficult, unless the stratification is represented as a 
small number of layers, typically two. This restriction to layered flow has come about 
because of the intrinsic and awkward nonlinearities present in representations of 
stratified flow, save for special cases such as Long’s (1953, 1955) solution, similarity 
solutions (e.g. Wood 1968 ; Benjamin 1981), or small-amplitude theories. Layered 
models have proved exceptionally useful in explaining observations from many areas 
(e.g. the treatment of ocean throughflow at Gibraltar by Armi & Farmer 1988). When 
only two layers are permitted, a solution technique using the two local Froude 
numbers gives a convenient simplification (Benton 1954; Armi 1986). For more 
layers, a Froude-number representation is still possible, although the matrix 
formulation that ensues is not simple to manipulate analytically (cf. Baines 1988; 
Baines & Guest 1988 for calculations with 64 layers; and Lawrence 1990 for a 
discussion of the need for multiple definitions of Froude number for a layered fluid). 
We give an alternative matrix formulation in 55. For continuous stratification, 
furthermore, it is far from clear which of many definitions of Froude number are in 
some sense optimal, as Baines’ wide-ranging 1987 review makes clear. We provide 
here a definition of the Froude number relevant for a continuously stratified fluid; 
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this definition is a function of the vertical coordinate, since one number cannot 
describe the behaviour of a stratified fluid save under special conditions. 

In  this paper we use density as a surrogate form of vertical coordinate and 
construct the hydraulic equations in that system. Several other coordinate systems 
have been used for hydraulics problems; Long (1953), for example, employs both an 
upstream (undisturbed) vertical coordinate and a vertical displacement, and 
Benjamin (1981) employs the upstream density profile to advantage. However, 
isopycnal coordinates are convenient for many applications since mass or density 
conservation along a streamline is automatically built in. It will also turn out that 
density coordinates rather naturally imply the role of the Froude number in 
hydraulic control. Using this coordinate system we then derive the conditions for the 
flow to be critical, or controlled. These conditions involve a simple ordinary 
differential equation whose solution depends solely on the vertical distribution of the 
Froude number. Criticality requires that the Froude number be less than a certain 
value, for most of the boundary conditions considered. 

Using density coordinates implies some restrictions on the flow. One is that the 
stratification must be everywhere stable. Since solutions with low or negative 
Richardson numbers would be expected to be unstable anyway, this restriction is not 
strong. There is no formal reason why layered flows cannot be treated as a special 
case, and we shall connect the solutions found for a continuous fluid back to the more 
familiar layered model a t  several places in what follows. We shall also require the 
long-wave, or hydrostatic, approximation to hold. Without this approximation, 
density coordinates give a useful simplification, but the problem remains fully two- 
dimensional ; thus lee-wave phenomena cannot easily be studied in this manner. 

The horizontal velocity is assumed to be of one sign throughout, so that critical 
layers are not permitted. This is not a restriction imposed by our choice of 
coordinates. Bidirectional flows in a continuously stratified fluid (e.g. lock exchange 
flows) are somewhat peculiar, and do not behave like their layered counterpart unless 
the number of layers becomes very large. In  particular, the surface at which the 
velocity is zero becomes everywhere flat in a continuously stratified fluid. Appendix 
A discusses this problem. Hydraulic jumps and instabilities are not considered in the 
main text, although Appendix B derives the weak jump conditions (following Su 
1976) and shows how these are connected to the conditions on Froude number 
derived in the text. 

Section 2 derives equations for a set of hydraulics problems using density 
coordinates. Section 3 discusses hydraulic control in the system, and $4 derives a 
necessary condition on the Froude number for control to occur. The connection with 
layered models is discussed in $ 5 ;  specific examples are provided in $6. 

2. Formulation 
We consider the flow shown schematically in figure 1. A stably stratified fluid 

possesses density p. The density of the lowest stratum of fluid is p,,, and of the highest 
stratum p1 = po- Ap. The fluid has velocity u in the x-direction, and runs along a 
channel of local width b(x). The velocity varies with both x and p. The bottom of the 
channel is located at  z = h(x), where z is the vertical coordinate. The geometry of the 
channel varies sufficiently gradually that we may make the approximation that flow 
quantities do not vary significantly across the channel. The treatment is given for a 
non-Boussinesq fluid; to convert to the Boussinesq case, merely set p to a constant 
where it appears as a factor. 
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Plan -" 
FIQURE 1.  Side and plan views of the configuration in this paper. 

We consider two upstream conditions : 
Case (Ul)  : a selective withdrawal problem from a reservoir of infinite width and 

specified stratification. Thus the width b becomes infinite far upstream, and the fluid 
velocity becomes zero there. 

Case (U2) : specified upstream flow and stratification in a channel whose width 
becomes uniform, of value b,, and whose bottom perturbation vanishes. 

We also consider three conditions a t  the fluid surface: 
Case (Sl ) : there is a rigid lid at  height x = H .  
Case (52): there is an infinitely deep fluid of density pl ,  i.e. the density of the 

highest stratum, occupying the space above the active fluid. The infinitely deep fluid 
is a t  rest. 

Case (53) : there is an infinitely deep fluid density p1 - Sp occupying the space above 
the active fluid. (This upper fluid could be air, corresponding to a free surface.) Thus 
a density jump of size Sp occurs a t  the top of the active fluid. This jump permits an 
external mode for the fluid, in which it behaves similar to a homogeneous fluid, and 
is largely controlled by the position of the surface (cf. Armi 1986 for a discussion of 
the two-layer case). We shall largely ignore this external mode in what follows. 

In case (S3), when Sp is small compared with the density change within the active 
fluid Ap, we shall see that in a restricted sense (53) becomes (S2), and when Sp 
becomes large with Ap, (S3) will become (Sl) .  

As is traditional in use of density coordinates, we use the linear Bernoulli function 

(1)  B defined by 

as a substitute for pressure, where g is the acceleration due to gravity. Then the 

B, = gz. (2) hydrostatic relation yields 

B = (pressure + pgz) 

Conservation of mass of density p implies 

a/az (pubzp) = 0, (3) 

so that we may integrate with respect to x to  give 

pubz, = -&(p) ,  (4) 

where &(p)  is the mass flux per unit density (and has units of volume flux). The sign 
is inserted to make the flux positive, since zp is negative for stability. Combining (2) 
and (4) implies 

( 5 )  
sQ 

pp P 
U b B  = --. 
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Whether the volume flux Q is a known function of density would usually depend on 
the upstream conditions. In  case (Ul) ,  it would probably be unknown; in case (U2), 
it would be specified since the upstream velocity is known. 

Conservation of energy takes a particularly simple form : 

which also integrates immediately to 

&d+B = +u:+B,, 

where u,, B, are both functions of p only. In  case (Ul) ,  u, is identically zero since the 
flow speed vanishes in the reservoir. In both upstream cases, B,(p) is known from the 
boundary conditions in p given below, and the knowledge of the upstream 

stratification, since Bop, = P o p  (8) 

P z  = 1/zp. (9) 

and the upstream density gradient pz satisfies 

We also must define a Froude number for each value of density. A uniformly 
agreed definition of a Froude number is lacking, as Baines (1987) notes; cf. also 
Lawrence’s (1990) discussion of a two-layer flow, which notes the relevance of four 
Froude numbers. For a layered model, there are (at least) as many Froude numbers 
as layers. Each takes the form 

F 2  = u 2 / ( g t D ) ,  

where D is the thickness of the fluid layer and g’ is a reduced gravity based on the 
density change across the layer. The values of the Froude numbers determine the 
properties of the flow, and in particular where criticality occurs for a particular fluid 
mode. (There are also as many modes as there are layers.) It is clear that only in 
special circumstances can a single number define flow properties for a continuous 
fluid (e.g. uniform flow and density gradient, such as Long’s 1953 model). 

Suppose we have ‘)z layers of fluid, and we let n --f co. Then gf + 0 and D + 0 also, 
making the value of the Froude number become infinite. Thus the appropriate 
definition for a continuously stratified fluid needs a suitable scaling: to avoid 
infinities; to provide the same value as used in other work when the fluid structure 
takes various special forms ; and to give a value which bears directly on the criticality 
of the fluid flow. A logical choice for stratified fluids is to define a ‘thickness ’ for a 
layer of infinitesimal thickness which is to be proportional to -zp (and indeed, zp 
takes the role of thickness D in the equations of motion above). This no longer has 
units of depth, so must be rescaled. We choose, with foreknowledge of later sections, 
to scale with Ap,  the density contrast across the fluid. (This effectively will define a 
Froude number for the internal modes of variability ; a different scaling would be 
relevant for the external mode.) We also choose a reduced gravity gf as g’ = gAp/p. 
This then yields 

(10) F2 = F ’ ( x , p )  = -- PU2 = - ~ .  PU2 

9AP2ZP AP2Bpp 

This definition reduces to Yih’s (1965) value for uniform pu2 and density gradient, 
and also, apart from a x factor, to that used by Baines (1987). (The other traditional 
choice for Fz, a ratio between u and (u-c), where c is a perturbation wave speed, 
cannot easily be defined because there are an infinite number of wave speeds to 
choose from, none of which is uniquely associated with any particular depth or 
density stratum.) The definition (10) is well-behaved, by the assumption of static 
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stability; it would be hard to create a meaningful definition of a Froude number if 
the fluid were unstable. 

Equations (5 ) ,  (7) need boundary conditions. On the floor, (2) gives 

B,,=gh, p=po.  

case (Sl) : B,, = gH, p = p1 ; 

case (52) : B = 0, P = p1; 

case (S3) : B = SpB,, p = pl. I At the surface, we have 

The set ( 5 ) ,  (7), (11) and (12) may usefully be combined into a single ordinary 
differential equation for the excess momentum flux 

Then ( 5 )  gives 
p = p(u*-u i ) .  

sQ Bpp = - 
bp(pp-’ + ui$ ’ 

so that differentiating (7) twice with respect to p and use of (13) implies 

We shall frequently use u as a convenient shorthand for (pp-l+ ui)i in the ensuing 
discussion. Then, in the upstream case (U2), u, is given by 

where the buoyancy frequency N is given by 

N2= -1 9P 
P 

and a subscript 0 again denotes values upstream. 
Equation (14), plus boundary conditions derived below, would be used to solve for 

the flow ; such solutions would typically be numerical. It is of interest, however, to 
re-express (14) using the Froude number. Substituting, we find that 

in which the relevance of the scaling of F2 becomes clear. Of course, F2 involves p ,  
so that (16) cannot be used for computations; the position is similar to the layered 
case in which F2 again occurs, but the problem cannot be solved just from the terms 
involving F2.  

Equation (14) has two boundary conditions. At the floor, we have Bp = gh, Bop = 0, 
so that differentiation of (7) gives 

Pp = -2gk p = Po. (17) 

At the surface, both B and B, satisfy one of the S conditions, so that p satisfies the 
homogeneous version of these : 

case ( ~ 1 ) :  p p  = 0, p = p l ;  

case (53): p = 6ppp, p = pl.  

case (SZ): p = 0, 
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In  (S3), (18) shows that under most conditions, Sp + 0 yields case (S2), and Sp -+ co 
gives case (Sl) .  However neither limit precludes the possibility of an external mode. 
The set (14), (17) and (18) may now in principle be solved a t  each value of x (and 
accompanying width b,  height h) for p ,  from which the other quantities of interest 
may be derived. Note that the trivial solution for upstream conditions (US), i.e. 
specified upstream flow, uniform width and a flat bottom, is 

p = 0 ,  
corresponding to u = u,,. 

The set (14), (17), and (18) may have no solution, a single solution, or multiple 
solutions. (We give examples below of 1 ,  2 and 3 solutions.) The solutions can be 
identified by a value of one of the variables, e.g. p or u a t  the upper boundary in case 
s1. 

2.1. Connection with other formulations 
It is straightforward to convert, e.g. Yih’s (1965) expression of the Dubreil-Jacotin 
equation 

to density coordinates. I n  Yih’s formulation, II. is the density-weighted stream- 
function, so that $z = p h .  The transformation yields 

1 
P(PU2),  + gz = f 4 P )  

and the first differential of this gives (14). Thus Long’s (1953) model, for example, is 
still a special case even in the density formulation, and can be derived simply. 

3. Control 
Hydraulic control is treated in the literature in a t  least three related ways. None 

seems to have been used to  investigate fully stratified flow. The first method (e.g. 
Armi 1986) examines the x-derivative of the solution, and seeks conditions under 
which this is everywhere well-behaved. The second method identifies control points 
with locations where a small long-wave perturbation has zero phase velocity. The 
third (e.g. Gill 1977) regards the solution to (14) as part of a multivalued functional 
relationship between one parameter of the system and the geometrical parameters ; 
at a control, the solution may be able to transfer smoothly from one branch of the 
relationship to another. 

All approaches have advantages and disadvantages. We shall consider the first and 
second approach here, and show them to be equivalent, and postpone the third 
temporarily. 

3.1. Conditions for well-behaved solutions 
If we define 

q = +/ax (19) 

then differentiation with respect to  x of (14) and its boundary conditions implies that 
q satisfies 
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and 
case ( S l )  : 

case (S2)  : 

case ( 5 3 )  : d P l )  = 4?lP(P,). 

qP(p1) = 0;  

q(p l )  = 0; 

From the definition of the Froude number, (20)  can be rewritten in the form 

We will see below that at a controlled point, q satisfies the homogeneous version 
of ( 2 3 ) .  It is interesting to see how the role of F2 has changed from the layered 
formulation. There, F entered a collection of algebraic equations for the flow 
variables. In  the continuous formulation, F enters the problem as a spatially varying 
coefficient to an ordinary differential equation, and the way F varies will determine 
whether the flow is controlled, or even whether it has a solution. 

A t  a non-controlled point in the fluid, the solution (22) ,  (23)  for q is well-behaved, 
and we enquire when this can break down. We solve (23)  by variation of parameters. 

and let r (p ) ,  s(p) satisfy Y ( r )  = 9 ( s )  = 0, 

together with initial conditions 

case ( S l )  : r(pl) = 1 ,  rp(p l )  = 0, s(pl) = 0, sp (p l )  = 1 : (26)  

case ( 5 2 ) :  r (p l )  = 0, r P ( p l )  = 1, s(pl) = - 1 ,  sp(pl) = 0 ;  (27)  

case (53): r(pl) = 1 ,  rp(p l )  = I/+, s(pl) = 0, sp(pl) = 1. (28)  

rs - T p S  = 1 (29)  Then thc Wronskian 
P 

in all cases, and the solution of (24)  can be written 
q = Ar+Cs.  

Substitution yields as usual 

where A,, C,  are constants. Substitution into (26) ,  (27)  or (28)  requires that C,  vanish 
in all cases, and condition (21)  then gives 

This yields a well-behaved solution for q provided that rp(po) does not vanish. 
Equivalently, the solution is well-behaved provided that r does not satisfy the 
homogeneous equation for q, together with homogeneous boundary conditions. 

When rP(po) vanishes, the flow is controlled. Since at such a point (29)  implies that 
s,,(p,) = l / r ( p , ) ,  there can only be a well-behaved solution for q if 

(Note that the integral can be written in many ways, e.g. as the integral of rBpp.) 
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We have thus found two sets of conditions for criticality. One set relates to the flow 
geometry. For a flat bottom, h, is identically zero. Hence a controlled, continuous 
solution can only occur when either 

b, = 0, i.e. a point of maximum constriction 

or 

The latter will in general only occur a t  some discrete set of locations. Hcnce control 
can only occur at points of maximum constriction (34a), or at a set of virtual controls 
(34b). Armi (1986) and Wood (1968) show the same features for two-layer and 
similarity-solution continuous flows respectively. In  the latter case (34 b), for a given 
&(p) ,  the fluid will not in general be able to reach some of the controls without a 
hydraulic jump occurring. 

For a channel of uniform width, 6, is identically zero. In  this case, a controlled 
solution can only occur when 

h, = 0, i.e. a point of maximum topographic height. (35) 
This, too, is in agreement with Armi’s (1986) results for two-layer flow. In  particular, 
his comments concerning flows where the free surface is controlled apply : upstream 
of such a point, all internal modes must be at least critical, since there can be no 
controlled flow for any of the internal modes by (35). Furthermore, if one internal 
mode is controlled a t  a point of maximum height’, then no other mode may be 
controlled upstream. 

When both width and depth of the channel are permitted to vary, the requirement 
of control gives more complicated locations for the control points of the flow, and no 
simple deductions can be made. 

The second criticality condition depends on the vertical distribution of the Froude 
number. Combining the features of the previous discussion, we can write this as 

criticality implies that there exists a solution to 

together with 

qp = 0, p = po, and condition (Sl) ,  (S2), or (S3). (36) 
Note that (36) is a homogeneous equation for q.  The condition it implies for F2 is 

implicit, in that  it involves the solution of an ordinary differential equation for q. We 
shall see below that the finite-difference version of this will reproduce the layered- 
model results. 

Conditions (34)-( 36) are necessary for control to occur, but not sufficient. Implicit 
in the idea of a flow passing from a subcritical to a supercritical regime, as noted 
earlier, is that there be two or more solutions for the same local geometry, and that 
two of these solutions merge at the point of control. This appears to be the case for 
the existing layer studies, and also applies for a continuously stratified fluid, as we 
shall show later. Also needed is that  the shape of the geometry actually permits 
control to occur. (For example, in the uniform width one-layered case, u: is 
proportional to - h,, a t  the control. If h,, is positive, corresponding to  a depression, 
then control cannot occur even though the conditions on the first derivative have 
been met. Similarly, in the uniform depth one-layered case b,, must be positive, 
corresponding to  a constriction.) 
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Similar features occur in the continuous problem. If we define 

v = q s  = P Z V  

613 

an equation for v may be derived by differentiating (23)  with respect to x. This gives 

- V 
vpp+- - u = (37) 

Also, v satisfies boundary condition (Sl), (S2) ,  or (S3)  at the surface and equals 
-2gh,, at the floor. The form of (37) is identical to (23) ,  and solvability conditions 
can be found in the same way. In  the general case these are not enlightening. In the 
two special cases mentioned above, however, (37)  gives more information about the 
physics of the situation. 

When the channel is everywhere flat (h  = 0 ) ,  and the flow passes through a point 
where b, is zero, the shape of q(p) has been determined, but not its amplitude, since 
the system is homogeneous. In this case v reduces to 

and good behaviour requires that 
l : rudp  = 0, 

where r is the same (homogeneous) function as before. This requirement will normally 
define the amplitude of q, and hence yield the x-derivatives of the solution a t  the 
control, provided that q2 is positive in (38) .  This in turn restricts the sign of b,,; one 
would expect this to be positive on physical grounds, but it is not clear that this 
would always have to be so. 

The other simple case is when the channel is of uniform width. As before, q satisfies 
a homogeneous equation and so its amplitude is not yet known. In  this case, v is 

Ap2F2 2pu2' 
simply 1 3q2 -- 

Good behaviour now requires that 

Thus the amplitude of q is set by (39) ,  again provided that the sign of h,, is such that 
q2 is positive. 

The third (Gill) technique for hydraulics can be shown to be equivalent to the 
above arguments. Integrating (14) together with one of the S surface conditions 
(26)-(28) gives p = p(p;  b,  d )  where d(x) is an unknown function of integration. 
Application of (17) will then determine d unless pN(po)  vanishes. However, from (25) ,  
and (26)-(ZS), pd is identically equal to T used above, whereupon the same conditions 

3.2. Long-wave perturbations 
We can also examine control by computing the long-wave speeds of small 
perturbations to flow moving locally with velocity ~ ( p )  and Bernoulli function B(p), 

apply * t 

t I am indebted to a referee for this point. 
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in a fluid of uniform width and depth. Denoting time by t ,  the linearized equations 
for momentum and volume perturbations u, B become 

put + pau, + B, = 0, 

B,,, + iBp,,, -k Bl,,, u, = 0. 

Seeking solutions which are functions of ( x - c t )  implies that B satisfies 

and boundary condition (12), plus 
B,(P,) = 0. (43) 

(Recall that these are the conditions satisfied by r or q for control.) Using the 
definition of Q, (42) becomes 

Now compare (44) with (36) noting that p+pui  = pa2, and the definition of Q .  The 
two equations are identical when c = 0. In  0 t h  words, the existence of a wave 
perturbation with zero phase speed is precisely equivalent to the condition of control 
deduced earlier, as expected. Now the system (44) possesses an infinity of wave 
speeds c. We also know, from Howard’s (1961) argument, that the wave speeds are 
all real unless the Richardson number 

. N 2  B Ra=-= - 5 < a somewhere.? 

If the flow is everywhere stable, then the wave speeds in (44) are readily enumerable 
and (in theory, a t  least) we may also enumerate the control points of a flow. In  
practice, this is very difficult, and requires extensive numerical evaluation, especially 
for a channel of varying width. It seems unlikely that ~ save for special cases - one 
could produce a solution which was well-behaved all the way back to an infinitely 
wide channel, since the flow would have to satisfy an infinite number of critical 
conditions. These would of course determine the structure and amount of the mass 
flux Q .  For flow in a channel of uniform width, where there is only one control point 
by (35), it is possible to construct solutions; one is given later. 

uz PUI, 

4. A necessary condition for control 
It is straightforward to derive a condition that the Proude number must satisfy for 

control to occur, at  least for conditions (Sl) ,  (S2). At a control, q satisfies (36) and its 
homogeneous boundary conditions. We define a non-dimensional density coordinate 

P-Po r=-> 
AP 

which runs from - 1 a t  the surface to 0 at the floor. Then (36) becomes 

Q qv7+- = 0, 
F2 

q = o  r =  -1,o.  toget her with 7 ’  

(45) 

(46) 

(47) 

t It is straightforward to use Howard’s argument directly on (44) to produce the same result. 
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If we put s = q,, we may rewrite this as 

(F2s,),+s = 0. (48) 
Multiplying by s and integrating from - 1 to 0, we have in both cases (Si)  and (52) 

(49) 

Now in case (Sl), the second integral of (49) satisfies 

since s( - 1) and s(0) both vanish (cf. Hardy, Littlewood & Polya 1952, p. 185). 
Thus ll F's; dy < 8: dv, (51) 

R -1 

(52) 
1 

so that F < -somewhere for criticality to occur (Sl) .  

(This bound is achievable, by uniform flow with uniform density gradient. Baines 
(1987) gives a solution for this in z-coordinates, using a different definition of F. Yih 
(1965) discusses a uniform upstream flow for this value of F when the long-wave 
approximation is not made.) The form of (52) demonstrates the reasoning behind the 
scaling for F. 

In case (S2), the condition on F 2  is slightly weaker. We now only have s( - 1) = 
0, and the relevant inequality is (Hardy et al. 1952, p. 184) 

R 

Accordingly we find that 

(54) 
2 

F < - somewhere for criticality to occur (S2). 
R 

There is no equivalent condition for condition (S3), since the boundary condition 
permits an external mode (i.e. one in which the fluid behaves more as a homogeneous, 
one-layer, fluid. (When SplAp is large, there is a solution for which F - + / A p  % 1, 
in fact. In  this case the relevant Froude number would need to be scaled rather 
differently.) 

These conditions may be combined into the single statement : 

A necessary condition for control to occur at a given point in the channel, for 
conditions (51) and (52), is that F somewhere be less than some critical value F, in 
the &id column. 

If criticality with respect to higher internal modes is considered, then WKBJ theory 
can be applied to (36). It is clear that over at  least part of the depth, F must be small, 
so that if the internal mode is sufficiently high, q can be written 
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Application of the surface boundary conditions then yields 

case ( ~ 1 ) :  GIpo- 1 Pdq x nx; 
F 

case (52): GJpo- i P a q  ( n + a ) x .  
F 

As usual, these conditions even give a reasonable order-of-magnitude guide for low 
internal modes (the uniform width rigid-lid case considered in $6 has the integral in 
(56) equal to 4.54 at criticality, instead of x as required by (56)). 

The necessary condition we have derived is far from being sufficient. It must be 
stressed that the entire vertical structure of the flow is involved with the 
determination of criticality, and in general (36) must be solved numerically. 

5. Connection with layered models 
It is of interest to connect the continuous representation of previous sections with 

layered-model representations. Consider for definiteness the rigid-lid surface 
condition (Sl) .  If the density range (pl, po) is divided into n subdivisions (which can 
be replaced by layers), each of density change A p l n ,  then the solution q can be 
described by the vector (ql, q2, ..., qn), as in figure 2. Notice that the boundary 
conditions imply external values qo = ql, qn+l = qn at  floor and surface respectively, 
and that the numbering is in the direction of decreasing density, to match standard 
usage (e.g. Baines 1988). 

Then the second-order finite-difference representation of (36) becomes 

Here Ff is the value of F 2  at level i ,  given by 

and A p  remains the density change across the entire fluid. Thus the density change 
across each layer, Ap', is given by A p / n ,  and the reduced gravity across each layer, 
g', is given by gAp'/p.  Finally, the depth of each layer, d,, is equal to - z p  Ap'. 

Thus the local (layered) Froude numberf, is given by 

U? f ?  = 2 
' g'd,' 

and the above reasoning shows that 

fi 

" n  
F - -  

Then (57) becomes 

q. 
qi+l-2qi+q,-l+" = 0, i = 1,2, ..., n, 

f,2 

(58) 

(59) 
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0 0 ... 1 ( 1 / E - 1 )  

... 
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= 0. (60) 

. (“4 
FIQURE 2. The finite-difference representation of the continuous problem. 

i.e. fl+fE = 1, (62) 

which is the well-known requirement for rigid-lid control (Benton 1954; Armi 1986). 
The entire density coordinate representation, indeed, converts immediately to the 

n-layer case by finite differencing (which is why, in some sense, density coordinates 
are natural for the problem). For example, consider the control problem with n fluid 
layers. We use Baines’ (1988) formulation, in which the pressure in the top (nth) layer 
is ps ,  and the depth and density of each layer are d,, pi respectively. Mass continuity 

(63) 
implies that a 

ax - ( p ~ d ) = O ,  

so that, defining piu: as pi to maintain notation, 

( P i m z  = 0 

or 

We may also write the momentum equation at level i as 
n i 

j=i+l j = O  
&ax+Psz+g C pjdjx+g CI Pidiz = 0. 

(64) 

We now take the second derivative of (65) in finite-difference form: take (65) 



618 P. D. Killworth 

evaluated at (i+ 1 )  -twice (65) a t  (i) plus (65) a t  (i- l),  and use the fact that the pt 
are linearly spaced with i. The result, after using (64), is 

Putting qi = p i ,  as in the continuous case, we obtain 

which is precisely of the form (59). Exactly similar exercises can be performed for the 
top level, using the conditions (Sl) or (SZ). It is also straightforward to treat the 
layered equations themselves in this way, rather than in the more usual manner of 
Baines (1988), to obtain equations which are merely finite-difference equivalents of 
(16). 

6. Some numerical examples 
We have discussed control from two points of view : that control occurs a t  a point 

where the x-derivative of the flow is required to  be well-behaved ; and as the location 
of a point of vanishing long-wave perturbation velocity. These conditions are 
necessary for control, but not sufficient. To see this, we now consider, using 
numerical examples, the third requirement (e.g. Gill 1977) that there be two solutions 
for a given geometry, and that these link smoothly at the point of control. 

All examples make the Boussinesq approximation, have a rigid lid (Sl) ,  and are 
non-dirnensionalized (using a scale H for z, h ;  b, for b ;  (gApHp;'); for u, and (gApH) 
for B, 50 that  the non-dimensional p runs from - 1 at  the surface to 0 at  the floor like 
the q coordinate earlier). 

6.1. Hydraulic control over topography 

Q = A+BwsR(p+0.5), 
We choose the mass flux 

which is symmetric about the midpoint of the density range. Here R = 4, A = 0.3, 
and B = -0.21. The upstream density gradient is uniform, so that Bop, = - 1. Thus 
the upstream velocity uo = Q. The width b is maintained a t  unity. 

When the topographic height h is less than h,,, = 0.10397, there are two solutions 
to (14). One is subcritical, and one supercritical (i.e. all long-wave perturbation 
velocities are positive). When h = hmax, the two solutions coincide; and there are no 
solutions for h > hmax. Thus the control can only occur a t  h = h,,, and from (35) this 
must be the maximum of the topographic height. 

Figure 3 shows contours of density for the solution. Since the flow follows these 
contours, figure 3 ako shows the contours of the streamfunction for the flow, 
although with unequal contour interval. On the supercritical side of the flow, there 
is a strong pycnocline at a height of about 0.15, and a rarefaction in the upper half 
of the fluid. Indeed, the Richardson number falls to  0.3 in that  region, so that the flow 
is nearly unstable there. Figure 4 shows how the volume flux, initially symmetric 
about mid-depth, becomes increasingly concentrated at  lower depths as the 
topography is passed, corresponding to  the increased stratification at those depths. 
The u velocity (figure 5) is increased correspondingly. This yields very asymmetric 
profiles o f F  (figure 6); over the maximum of the topography, F is less than l/n in 
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FIQURE 3. Contours of density, contour interval 0.02, for the problem (68), for flow in a channel of 
uniform width with a rigid lid. The lowest contour, p = 0,  delineates the topography. The r-scale 
is arbitrary. 
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Q 
FIGURE 4. Plots of the volume flux Q for the problem in figure 3, shown here as a function of depth, 
-, upstream, ---, at the point of control, and ..., downstream. The curves all show the same 
function Q(p) .  
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FIQURE 5. Plots of the velocity u for the problem in figure 3 ;  annotation as for figure 4. 

the depth range 0.52 < z < 0.79, thus satisfying the necessary requirements for 
control. 

The same volume flux (68) and conditions are retained, but the topographic height 
h is now zero, and b is permitted to vary. As b decreases below unity, we find three 
solutions, shown in figure 7. Two (the left-hand and right-hand upper curves) are 
mirror images of each other in the vertical; recall that the vertical boundary 
conditions are symmetric for this problem. Both solutions are supercritical. The third 
solution, the middle curve in figure 7 ,  is subcritical. The two supercritical solutions 
cease to exist for b < be = 0.593. The subcritical solution becomes critical a t  b = be, 
and supercritical for b < b,, where there is only one solution. All solutions coincide 
a t  b = b,. 

The symmetry of the solution about p = -0.5 implies that F is also symmetric; 
thus conditions (34 b )  and (38) are both automatically satisfied at the point of control, 
just as in Wood’s (1968) similarity solution. Hence b = be is a point of virtual control. 
Figure 8 shows the solution for 1 2 b 2 0.2. 

It is also possible for the two supercritical branches to join smoothly, but only if 
b = b, is a local minimum in width, by (34a). This situation is shown in figure 9;  the 
two solutions are mirror images of each other with respect to x and depth. Note that 
no other combinations are possible for control, since the smoothness of higher 
derivatives is only possible if the solutions themselves have continuous derivatives ; 
equality of the two solutions is not sufficient. So, for example, neither of the 
supercritical branches can link smoothly to the subcritical solution a t  b = be even a t  
a local minimum of width. 

6.2. Virtuul control through constrictions . 
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FIGURE 6. Plots of local Froude number F for the problem in figure 3; annotation as 
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u surface 
FIGURE 7. The surface velocity u, for the mass flux Q in (68), as the channel width b varies in a 
channel of uniform depth. When b is larger than 0.593, there are three solutions. The central 
solution is subcritical, and continues smoothly through the virtual control. The other two solutions 
are supercritical, and are mirror images of each other in the vertical. 
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FIQURE 8. Contours of density for the problem in figure 7. for flow near the virtual control ; 6 varies 
from 1 (at the left) t o  0.2 (at the right). A vertical dotted line shows the virtual control. The 2-scale 
is otherwise arbitrary. 
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FIGURE 9. Contours of density for the problem in figure 7,  for controlled flow between the two 
supercritical solutions (which are mirror images of each other). The width 6 ranges from 1 (at outer 
edges of the diagram t o  0.593 at the  centre, where the control occurs. The 2-scale is otherwise 
arbitrary. 
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FIGURE 10. The surface velocity for mass flux Q given by (69), as width b varies. When b > b, = 
0.71, one subcritical and two supercritical solutions exist, although one of the supercritical 
solutions does not exist for b > 0.84. A normal control exists at b = 6,. Only one supercritical mode 
exists for b < b,. 

6.3. Control through constrictions 
We modify the previous flux to make it asymmetric with respect to density. We use 

= A+BcosR(p+0.4), (69) 

with A ,  B and R retaining their previous values. This removes the two symmetric 
supercritical modes of $6.2, and replaces them by a supercritical mode which is 
unaffected by the control, and another supercritical mode (which only exists for 
b < 0.84). The subcritical mode still exists; figure 10 shows the situation. When the 
width b reaches b, = 0.71, the subcritical mode becomes critical and can join smoothly 
onto the second supercritical mode provided b is a minimum a t  b,. When b < b,, only 
the first supercritical mode remains. 

8. Conclusions 
The use of density coordinates has been shown to yield convenient simplifications 

in the study of stratified hydraulic theory, provided that the long-wave assumption 
holds. This paper has discussed some hydraulic control using these coordinates. A 
simple expression for hydraulic control has been derived, showing that, as in layered 
theory, contractions in channel width yield an infinite number of virtual controls, 
while topographic height changes only permit a single control, located a t  the 
maximum of the topography. A necessary condition for control, in terms of the local 
Froude number, has been derived. The theory connects straightforwardly with the 
more elaborate matrix theory when multiple layers are employed; in particular, the 
Benton-Armi expression for two-layer control can be derived by finite-differencing 
the continuous case. 
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A feature of the controlled solutions given here is that Richardson numbers often 
become small in supercritical regimes, implying that flow instabilities may be likely. 
This may be a generic feature. Wood’s (1968) similarity solution is a case in point. 
In the density coordinate system, it is found very simply by seeking solutions of the 
form 

where the choice of E and F depend on the boundary conditions used.i This form, 
as noted by Wood (1968), automatically satisfies all conditions at each virtual 
control. The value a then satisfies an equation very similar to the problem for a single 
layer, as b varies, and can be written 

P = a(s)[Bo(p) +& +PI, (70) 

(71) 

where K is a constant dependant upon mass flux. Equation (71) has the familiar 
property of possessing two positive solutions for u or none, with control occurring for 
a particular value of b. If we evaluate the Richardson number Ri for these solutions, 
we find that Ri varies as a function of density times (a%-1. Assuming that the 
problem involves flow from a very wide reservoir, through a contraction, and out into 
another wide reservoir, we see from (71) that a - 2 for large b and supercritical flow, 
and a - (K/b)2 for large b and subcritical flow. Thus on the supercritical side, as b 
becomes small, Ri varies as b-l, and becomes very small. This again suggests the 
presence of flow instabilities in the supercritical region. 

David Andrews much improved the proof in $3;  Jeff Blundell provided useful 
graphics ; and the referees provided helpful comments. 

Appendix A. Bidirectional flow 
We examine here the properties of flow which takes both positive and negative 

values. The conclusions are derived using density coordinates, but may straight- 
forwardly, if tediously, be found using the usual vertical coordinate. 

We assume that u(p) has a simple zero at p = pc, and that zp is well behaved there. 
Thus u passes smoothly from a positive to a negative value as the depth changes, and 
the density gradient remains finite. Then (3) implies that 

u = 0, p = pc, and hence uo = 0, 

B k ,  P c )  = B,(pc). 

p = pc ,  (A 1) 

(A 2) 

(L4u2)p+Bp = (L4u;)p+B0p, (A 3) 

so that the surface p = pc is motionless. Application of the Bernoulli constraint (7) 
then gives, using (A l ) ,  

Differentiation of (7)  with respect to p also gives 

Thus the surface of zero velocity is everywhere flat. (A2) also shows that the pressure 
is uniform on the surface. 

t The solution given by Wood relates to condition (S2), where the upper surface sinks as the fluid 
moves through a contraction. For case (Sl), E and F are chosen to make the topographic height 
h be related to the solution structure : the topographic height rises through a constriction in case 
(Sl) by precisely the amount that the upper surface sank under condition (52). 
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A consequence of this is that both p (= pu2) and p p  vanish at p = pc so that the 
second:order equation (14) applies separately to two disconnected halves, separated 
by a rigid horizontal ‘wall ’ on which horizontal and vertical velocity both vanish. 
This is not observed in nature (e.g. the Gibraltar data discussed by Armi & Farmer 
1988) where it is usual for the surface dividing in- and outflow to migrate up and 
down, although most data refer to time-dependent situations. 

The connection with layered fluids developed in $ 5  can also be used to show that 
as the number of layers becomes large (and the density jump between each layer 
becomes correspondingly small), then the layer with zero velocity-or its two 
neighbours if no layer has precisely zero velocity - becomes flat. 

Other than because of time dependence, this peculiar response can only be 
removed by breaking one of the assumptions made. If u becomes discontinuous, then 
the resulting shear layer woiild almost certainly be unstable; the ensuing mixing 
would act to make u continuous once more. A jump in density does not give a 
problem in density coordinates (zp becomes zero), and the argument goes through as 
before. Only if the density becomes homogenized at  the point of zero velocity (so zp 
becomes infinite) does the argument break down. This could be produced by mixing, 
perhaps induced by a critical layer at the point of flow reversal. 

Appendix B. Weak shocks 

(1976). We write, for a uniform width fluid, the time-varying system 
It is enlightening to rederive the weak shock equations in this system, following Su 

put +puu, + B, = 0, 

ZPt + ( UZp),  = 0.  

P(UZ,)t + P(U2Z,), + ZpBx = 0. 
Combining these, we may write 

Denote conditions up- and downstream of the shock by suffices u and d respectively. 
In a frame of reference moving with the shock, (B 2 )  implies 

where the bar denotes a suitable average across the shock. Su (1976) takes this 
average to be one half of the up- and downstream values, and we do the same here. 
Using (B 4) to substitute for ud, (B 5 )  gives 

P p + : z p u  1 +(Bd-Bu)&pu+Zpd) = 0. 

We put 

which, substituted into (B 6 ) ,  gives 

5(P)  = ?e!z- 1,  
zPu 

Differentiating twice with respect to p then gives 

which is almost identical to Su’s (1976) result. 
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If the shock is very weak, 161 is very small, and (B 9) becomes 

- (P% E) ,  + W p u  E = 0. 

If we set = q, say, (B 10) becomes 

qPlJ + = o ,  

which is (23) when there is no downstream variation. Now q also satisfies the same 
boundary conditions as for the control problem in $13 and 4. This total agreement 
between a weak shock and a/ax of the flow is to be expected, since the frame of 
reference is such that the shock is steady ; hence control implies a wave perturbation 
of zero velocity. 
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